IMERC Fact Sheet
Mercury Use in Lighting

This Fact Sheet summarizes the use of mercury in lighting devices, such as fluorescent lamps, high intensity discharge (HID) lamps (e.g., automobile headlights), and neon signs. It includes the total amount of mercury in all products that were sold in the U.S. in 2001, 2004, 2007, and 2010.

The information in the Fact Sheet is based on data submitted to the state members of the Interstate Mercury Education and Reduction Clearinghouse (IMERC) including Connecticut, Louisiana, Maine, Massachusetts, New Hampshire, New York, Rhode Island, and Vermont. The data is available online through the IMERC Mercury-Added Products Database.

Types of Mercury Lamps

Mercury is used in a variety of light bulbs. It is useful in lighting because it contributes to the bulbs’ efficient operation and life expectancy. Fluorescent and other mercury-added bulbs are generally more energy efficient and last longer than incandescent and other equivalent forms of lighting, except for light-emitting diode (LED) lamps. While the bulbs are being used and are intact, the mercury within them poses no health risk.

Fluorescent Lamps

Fluorescent lamps\(^1\) operate at a very low gas pressure. They produce light when an electric current passes between two electrodes (also called cathodes) in a tube filled with low-pressure mercury vapor and inert gases, such as argon and krypton. The electric current excites the mercury vapor in the tube, generating radiant energy, primarily in the ultraviolet (UV) range. The energy causes a phosphor coating on the inside of the tube to “fluoresce,” converting the UV light into visible light. Changing the composition of the phosphor powder inside fluorescent tubes changes the spectrum of light produced. Mercury is present in the lamp in both the phosphor powder and in the vapor.

Fluorescent lamps require a ballast, which is a device used to provide and control the voltage in the lamp, and stabilize the current in the circuit. Fluorescent lamps are more energy efficient than incandescent light bulbs of an equivalent brightness because more of the energy input is converted to usable light and less is converted to heat. They also have a longer lamp life.

Depending on the type of fluorescent lamp, they can contain a wide range of mercury, from greater than 0 up to 100 milligrams (mg). According to the National Electrical Manufacturers

\(^1\) Fluorescent Technology, Osram Sylvania:
www.sylvania.com/LearnLighting/LightAndColor/FluorescentTechnology
Association (NEMA)\(^2\), about half of the fluorescent lamps manufactured by their members and sold in the U.S. contain 5 to 10 mg of mercury; while a quarter contain 10 to 50 mg.

The typical types of fluorescent lamps include: linear (straight), U-tube (bent), and circline (circular) fluorescent lamps/tubes; bug zappers; black lights; tanning lamps; germicidal lamps; high output lamps; cold-cathode fluorescent lamps; and compact fluorescent lamps as described below.

Linear fluorescent, U-tube, and Circline lamps are used for general illumination purposes. They are widely used in commercial buildings, schools, industrial facilities, and hospitals.

Bug zappers contain a fluorescent lamp that emits ultraviolet light, attracting unwanted insects.

\(^2\) NEMA is a trade association the electrical manufacturing industry. It has approximately 450 member companies that manufacture products used in the generation, transmission and distribution, control, and end-use of electricity.
Black lights use a phosphor composition that converts the short-wave UV within the tube to long-wave UV rather than to visible light. They are often used in forensic investigations.

Tanning lamps use a phosphor composition that emits primarily UV-light, type A (non-visible light that can cause damage to the skin), with a small amount of UV-light, type B.

Tanning Lamps; Photo Source: Northeast Lamp Recycling, Inc.

Germicidal lamps do not use phosphor powder and their tubes are made of fused quartz that is transparent to short-wave UV light. The ultraviolet light emitted kills germs and ionizes oxygen to ozone. These lamps are often used for sterilization of air or water.

Germicidal Lamp; Photo Source: Northeast Lamp Recycling, Inc.

High output fluorescent lamps (HO) are used in warehouses, industrial facilities, and storage areas where bright lighting is necessary. High output lamps are also used for outdoor lighting because of their lower starting temperature, and as grow lamps. They operate the same as fluorescent lamps, but the bulbs are designed for much higher current arcs. The light emitted is much brighter than that of traditional fluorescent lamps. However, they are less energy-efficient because they require a higher electrical current.

Cold-cathode lamps are small diameter, fluorescent tubes that are used for backlighting in liquid crystal displays (LCDs) on a wide range of electronic equipment, including computers, flat screen TVs, cameras, camcorders, cash registers, digital projectors, copiers, and fax machines. They are also used for backlighting instrument panels and entertainment systems in automobiles. Cold-cathode fluorescent lamps operate at a much higher voltage than conventional fluorescent lamps, which eliminates the need for heating the electrodes and increases the efficiency of the lamp 10 to 30 percent. They can be made of different colors, have high brightness, and long life.
Compact fluorescent lamps (CFL) use the same basic technology as linear fluorescent lamps, but are folded or spiraled in order to approximate the physical volume of an incandescent bulb. Screw-based CFLs typically use “premium” phosphors for good color, come with an integral ballast, and can be installed in nearly any table lamp or lighting fixture that accepts an incandescent bulb. Pin-based CFLs do not employ integral ballasts and are designed to be used in fixtures that have separate ballasts. Both screw-based and pin-based CFLs are used in commercial buildings. Residential use of these types of bulbs has been growing because of their energy efficiency and long life.

Individual CFLs generally contain less than 10 mg of mercury, with a significant portion (two-thirds) containing less than 5 mg. A small percentage of CFLs contains between 10 and 50 mg of mercury.

High Intensity Discharge (HID) Lamps

High intensity discharge (HID)\(^3\) is the term commonly used for several types of lamps, including metal halide, high pressure sodium, and mercury vapor lamps. HID lamps operate similarly to fluorescent lamps. An arc is established between two electrodes in a gas-filled tube, causing a metallic vapor to produce radiant energy. HID lamps do not require phosphor powder, however, because a combination of factors shifts most of the energy produced to the visible range. In addition, the electrodes are much closer together than in most fluorescent lamps; and under operating conditions the total gas pressure in the lamp is relatively high. This generates extremely high temperatures in the tube, causing the metallic elements and other chemicals in the lamp to vaporize and generate visible radiant energy.

HID lamps have very long life. Some emit far more lumens per fixture than typical fluorescent lights. Like fluorescent lamps, HID sources operate from ballasts specifically designed for the lamp type and wattage being used. In addition, HID lamps require a warm-up period to achieve full light output. Even a momentary loss of power can cause the system to “re-strike” and have to warm up again – a process that can take several minutes.

The names of the HID lamps (i.e., metal halide, high pressure sodium, and mercury vapor) refer to the elements that are added to the gases that are generally xenon or argon and mercury in the

\(^3\) HID Technology, Osram Sylvania: www.sylvania.com/LearnLighting/LightAndColor/HIDTechnology/.
arc stream. Each element type causes the lamp to have somewhat different color characteristics and overall lamp efficiency as described below.

Metal halide lamps (MH) use metal halides, such as sodium iodide, in the arc tubes, which produce light in most regions of the spectrum. They provide high efficacy, excellent color rendition, long service life, and good lumen maintenance, and are commonly used in stadiums, warehouses, and any industrial setting where distinguishing colors is important. They are also used for the bright blue-tinted car headlights and for aquarium lighting. Low-wattage MH lamps are available and have become popular in department stores, grocery stores, and many other applications where light quality is important. Of all the mercury lamps, MH lamps should be considered a complete system of lamp, ballast, igniter, fixture, and controls. The amount of mercury used in individual MH lamps ranges from more than 10 mg to 1,000 mg, depending on the power level. According to NEMA, about one-third of these lamps sold in the U.S. contain greater than 100 to 1,000 mg of mercury.

![Metal Halide Lamp](https://images.neastlamprecycling.com/)

Ceramic metal halide lamps (CMH) were provide a high quality, energy efficient, alternative to incandescent and halogen light sources. Many are designed to be optically equivalent to the halogen sources they were designed to replace. They are used for accent lighting, retail lighting, and are useful in high volume spaces, with ceiling heights of 14-30 feet. The arc tube is made of ceramic. CMH lamps provide better light quality, better lumen maintenance, and better color consistency than MH lamps at a lower cost. CMH lamps contain less mercury than MH lamps. The majority contain from greater than 5 mg to 50 mg of mercury.
High pressure sodium lamps (HPS) are a highly efficient light source, but tend to look yellow and provide poor color rendition. HPS lamps were developed in 1968 as energy-efficient sources for exterior, security, and industrial lighting applications and are particularly prevalent in street lighting. Standard HPS lamps produce a golden (yellow/orange) white light when they reach full brightness. Because of their poor color-rendering their use is limited to outdoor and industrial applications where high efficacy and long life are priorities. HPS lamps generally contain 10 to 50 mg of mercury. A small percentage contains more than 50 mg of mercury.

![High pressure sodium lamps; Photo Source: Osram Sylvania](image)

Mercury vapor lighting is the oldest HID technology. The mercury arc produces a bluish light that renders colors poorly. Therefore, most mercury vapor lamps have a phosphor coating that alters the color and improves color rendering to some extent. Mercury vapor lamps have a lower light output and are the least efficient members of the HID family. They were developed to overcome problems with fluorescent lamps for outdoor use but are less energy efficient than fluorescents. Mercury vapor lamps are primarily used in industrial applications and outdoor lighting (e.g., security equipment, roadways, and sports arenas) because of their low cost and long life (16,000 to 24,000 hours). Mercury vapor lamps generally contain between 10 and 100 mg of mercury. A small portion contains greater than 100 mg of mercury.

![Mercury Vapor Lamps; Photo Source: Osram Sylvania](image)
Mercury short-arc lamps are spherical or slightly oblong quartz bulbs with two electrodes penetrating far into the bulb so that they are only a few millimeters apart. The bulb is filled with argon and mercury vapor at low pressure. Wattage can range from under a hundred watts to a few kilowatts. With the small arc size and high power, the arc is extremely intense. Mercury short-arc lamps are used for special applications, such as search lights, specialized medical equipment, photochemistry, UV curing, and spectroscopy. The mercury short-arc lamps contain relatively larger amounts of mercury, typically between 100 mg and 1,000 mg. Nearly a quarter of these lamps contain more than 1,000 mg of mercury.

![Mercury Short-Arc Metal Halide Lamp](image)

Mercury xenon short-arc lamps operate similarly to mercury short-arc lamps, except that they contain a mixture of xenon and mercury vapor. They require a shorter warm-up period compared with regular mercury short-arc lamps, and they have better color rendering. They are used mainly in industrial applications. The mercury xenon short-arc lamps can contain anywhere between 50 mg and 1,000 mg of mercury. A small percentage of these lamps contain more than 1,000 mg of mercury.

![Mercury Xenon Short-Arc Lamps](image)
Mercury capillary lamps provide an intense source of radiant energy from the ultraviolet through the near infrared range. These lamps require no warming-up period for starting or restarting and reach near full brightness within seconds. They come in a variety of arc length, radiant power, and mounting methods, and are used in industrial settings (i.e., for printed circuit boards), for UV curing, and for graphic arts. UV curing is widely used in silkscreening, CD/DVD printing and replication, medical manufacturing, bottle/cup decorating, and converting/coating applications. These specialized lamps contain 100 to 1,000 mg of mercury.

![Mercury Capillary Lamps](Photo Source: Northeast Lamp Recycling, Inc.)

Neon Lamps

Neon lights are gas discharge bulbs that commonly contain neon, krypton, and argon gasses (also called noble gasses) at low pressure. Like fluorescent bulbs, each end of a neon light contains metal electrodes. Electrical current passing through the electrodes ionizes the neon, and other gases, causing them to emit visible light. Neon emits red light; other gases emit other colors. For example, argon emits lavender and helium emits orange-white. The color of a “neon light” depends on the mixture of gases, the color of the glass, and other characteristics of the bulbs. Neon lights are estimated to contain approximately 250 to 600 mg of mercury per bulb, depending on the manufacturer’s preference.

!Neon Tube !Neon Alligator Signage

Although the term “neon light” refers to all gas discharge bulbs using noble gases, regardless of the lamp color, only the red bulbs are true neon lights (i.e., use neon). Red neon lights do not contain mercury. Almost every other “neon light” color uses argon, mercury, and phosphor, in addition to other noble gases.

The neon light industry is a cottage industry. Artisans make each lamp individually in small workshops. The vast number of neon light manufacturers has made it difficult for IMERC to
identify them. As a result, the IMERC-member states have not yet received Notifications from most of the manufacturers of neon lights.

Amount of Mercury in Individual Lamps

Table 1 summarizes the range in the amount of mercury in each type of mercury lamp manufactured and sold as new in the U.S. Manufacturers, importers, and distributors of mercury-added products report the amount of mercury used as an exact number or as a range.

<table>
<thead>
<tr>
<th>Lamp Type</th>
<th>Range of Mercury in Lamp (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluorescent</td>
<td>0 – 100</td>
</tr>
<tr>
<td>CFL</td>
<td>0 – 50</td>
</tr>
<tr>
<td>Metal Halide (MH)</td>
<td>>10 – 1,000</td>
</tr>
<tr>
<td>Ceramic Metal Halide</td>
<td>0 – 50</td>
</tr>
<tr>
<td>High Pressure Sodium</td>
<td>>10 – 50</td>
</tr>
<tr>
<td>Mercury Vapor</td>
<td>>10 – 1,000</td>
</tr>
<tr>
<td>Mercury Short-Arc</td>
<td>> 100 – > 1,000</td>
</tr>
<tr>
<td>Mercury Capillary</td>
<td>> 100 – 1,000</td>
</tr>
</tbody>
</table>

Total Mercury Use in Lamps

Table 2 presents the total amount of mercury in lamps sold in the U.S. during calendar years 2001, 2004, 2007, and 2010. This is the largest reporting category and more than 150 manufacturers have submitted Mercury-added Product Notification Forms to IMERC-member states, including companies represented by the trade association, the National Electrical Manufacturer’s Association (NEMA) Lighting Section.

Table 2: Total Mercury in Lamps Sold (pounds)

<table>
<thead>
<tr>
<th>Lamp Type</th>
<th>2001</th>
<th>2004</th>
<th>2007 Data Not Available</th>
<th>2010 Data Not Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluorescent</td>
<td>16,657</td>
<td>14,371</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFL</td>
<td>877</td>
<td>1,479</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Pressure Sodium</td>
<td>401</td>
<td>459</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metal Halide</td>
<td>2,145</td>
<td>2,448</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury Vapor</td>
<td>201</td>
<td>250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury Short-Arc</td>
<td>11</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neon</td>
<td>1,103</td>
<td>1,071</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>42</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>21,437</td>
<td>20,119</td>
<td>21,292 (10.65 tons)</td>
<td>16,793 (8.4 tons)</td>
</tr>
</tbody>
</table>

[Note: 453.6 grams = 1 pound; all numbers are rounded to the nearest whole number.]

Overall, mercury use in this product category decreased from 10.71 tons in 2001 to 8.4 tons in 2010 – a decline of approximately 22 percent.

In the early 2000s, there was a significant increase in the number of electronics utilizing fluorescent lamps for illumination in displays. Stand-alone liquid crystal display (LCD) monitors became standard with new computers and a wide variety of home and office equipment, including televisions, global positioning system (GPS) units, hand-held communications and entertainment systems, and digital cameras. Use of mercury-added lamps in automobiles and recreational vehicles also increased significantly during this time. In addition to HID headlamps, many automobiles started offering entertainment systems, navigation systems, and instrument panels that utilized LCD screens or backlighting that contained mercury.
lamps. Many recreational vehicles also offered option packages that included flat-panel televisions with fluorescent lamps and linear fluorescent lamp fixtures.

In addition, government agencies, companies, and environmental organizations heavily promoted the use of energy-efficient liner and compact fluorescent bulbs for general consumer use. The cost of CFLs declined dramatically so that they are more affordable for consumers and ubiquitous in the market.

In more recent years however, light-emitting diode (LED) bulbs have become more available and affordable. LED lamps are significantly more energy efficient than fluorescent lamps. Many of the same manufacturers that utilized mercury lighting in LCD screens for their products are now switching to LEDs. LEDs are also becoming more common for consumer use and therefore, the use of mercury in lighting is expected to decline.

Phase-Outs & Bans on the Sale of Mercury Lamps

The following IMERC-member states currently have restrictions on the sale and/or distribution of certain mercury-containing lamps that may apply due to their high mercury content: Connecticut (> 100 mg), Louisiana (> 10 mg), and Rhode Island (> 10 mg). In addition, Vermont has banned the sale of all neon lamps.

As of the 2010 reporting period, the following companies have reportedly eliminated the use of mercury-added lamps in their products sold in the U.S. market:

- 3M Security Systems – fluorescent lamps used in various electronics
- Codman & Shurtleff (a Johnson & Johnson Co.) – fluorescent lamps used in monitors
- DePuy Orthopaedics, Inc. – fluorescent lamps used in LCD screens
- Electrolux Home Products – fluorescent lamps used in cooking ranges
- Ethicon, Inc. (a Johnson & Johnson Co.) – fluorescent lamps used in monitors
- Maytag Appliance – fluorescent lamps used in ovens
- Northland Corp. – fluorescent lamps used in refrigerators
- Whirlpool Corporation – fluorescent lamps used in cooking ranges

Mercury Lamp Recycling and Disposal

According to the EPA, fluorescent and other mercury lamps must be managed as hazardous waste under the Universal Waste Rule unless the bulb passes the Toxicity Characteristic Leaching Potential (TCLP) test. All of the IMERC-member states, California, Connecticut, Illinois, Louisiana, Maine, Massachusetts, Michigan, Minnesota, New Hampshire, New Jersey, New York, North Carolina, Rhode Island, Vermont, and Washington have adopted the Universal Waste Rule. These states require businesses and other non-residential organizations to recycle

5 The Universal Waste Rule (UWR) is an EPA regulation meant to streamline collection requirements for certain hazardous wastes in the following categories: batteries, pesticides, mercury-containing equipment (e.g., thermostats), and lamps (e.g., fluorescent bulbs). The rule is designed to reduce hazardous waste in the municipal solid waste (MSW) stream by making it easier for universal waste handlers to collect these items and send them for recycling or proper disposal. For more information: http://www.epa.gov/epaoswer/hazwaste/id/univwast/index.htm.
mercury-containing lamps or dispose of them as either universal or hazardous waste. In most cases, residential households are exempt from these regulations. However, in some states, including Maine, Massachusetts, Minnesota, and Vermont, households must properly recycle or dispose of all mercury-containing lamps, including CFLs.

For more information on state-specific lamp recycling and disposal requirements visit www.newmoa.org/prevention/mercury/lamprecycle/requirements.cfm and/or www.almr.org. Homeowners and businesses can also call their state environmental agencies’ hazardous waste bureaus for more information.

There are a significant number of companies, government programs, and non-governmental organizations involved with collecting and recycling spent mercury-added lamps. The states of Maine, Vermont, and Washington have enacted extended producer responsibility (EPR) legislation for fluorescent lighting. These laws require manufacturers to finance the costs of recycling or safe disposal of their products. Household hazardous waste (HHW) programs will also accept and recycle CFLs and other fluorescent lamps in many other communities.

In addition, some lamp manufacturers and retail stores have also launched collection and recycling programs for fluorescents and other mercury-added lamps. For example, Home Depot has established a free program to collect and recycle CFLs from consumers, which allows consumers to drop-off their spent fluorescent lamps for recycling at almost 2,000 store locations. Other independent hardware stores and hardware store chains, including Ace and TrueValue, may accept CFLs and/or other fluorescent lamps for collection and recycling at some store locations. Osram-Sylvania offers a mail-back program for consumers to return their spent CFLs for recycling. Consumers can order a “Mini RecyclePak” online. The kit is pre-labeled and comes with all the necessary packing materials so consumers simply return the kit with the spent bulbs to any U.S. Post Office or mail collection center. They also offer recycling kits for businesses and distributors that fit other sizes of fluorescent lamps.

The Maine Department of Environmental Protection (Maine DEP) conducted a study on mercury releases from CFL breakage in February 2008. The Study suggested that mercury concentrations from a broken bulb may be above safe indoor air levels. As a result, Maine DEP revised its clean-up guidance for broken CFLs. The U.S. Environmental Protection Agency (EPA) and many state environmental agencies have reviewed the Maine Report and updated their broken CFL clean-up recommendations as well. The EPA continuously updates this guidance. For information about cleaning up a mercury spill from a fluorescent bulb breakage visit: www.epa.gov/mercury/spills/index.htm#fluorescent. Additional links to IMERC-member states CFL cleanup guidance are listed below:

- California
- Connecticut
- Illinois
- Maine
- Massachusetts
- Minnesota
- New Hampshire
- New Jersey
- New York
- Rhode Island
- Vermont
- Washington

As stated above, mercury is contained in a powder form and as a vapor in fluorescent lamps, and it adheres to the glass walls of lamps over time. For more information on possible mercury environmental releases from lamps visit: www.newmoa.org/prevention/mercury/landfillfactsheet.pdf.

Non-Mercury Alternatives

Because of their energy-efficiency, mercury-added bulbs will continue to be used, but should be managed as a hazardous waste, and recycled, at the end of their useful life. As stated above, each state has specific regulations for businesses and homeowners regarding recycling or disposal of mercury-added lamps.

LED technology is one alternative to mercury-containing lamps. An LED is a semi-conductor diode that emits light when an electrical current is passed in the forward direction of the device through the LED circuit. The light emitted from LED lamps depend on the semi-conductor material used and may appear blue (cooler) or white (warmer) in color.

LEDs have been around since the 1960s for commercial applications and offer energy efficiency, maintenance savings, impact resistance, durability, and other benefits. They are significantly more energy efficient than incandescent and fluorescent lamps. Today’s LEDs are commonly used in residential and commercial lighting applications, such as stadium displays, billboards, traffic lights, streetlights, and, more recently, as indicator lights in automobiles and aircraft carriers.

Data Caveats

A number of important caveats must be considered when reviewing the data summarized in this Fact Sheet:

- The information may not represent the entire universe of mercury-added lighting sold in the U.S. The IMERC-member states continuously receive new information from mercury-added product manufacturers, and the data presented in this Fact Sheet may underestimate the total amount of mercury sold in this product category.

- The information summarizes mercury use in lighting sold nationwide since 2001. It does not include products sold prior to January 1, 2001 or exported outside of the U.S.

- Reported data includes only mercury that is used in the product, and does not include mercury emitted during mining, manufacturing, or other points in the products’ life cycle.